899. Molecular Complexes. Part III.* The Crystal and Molecular Structure of the 1:2 Molecular Compound of Bis-8-hydroxyquinolinatocopper(II) and Picryl Azide

By A. S. BAILEY and C. K. PROUT

The crystal structure of the molecular complex of bis-8-hydroxyquinolinatocopper(II) and picryl azide has been determined by threedimensional X-ray methods. In the crystal, the picryl azide molecules occupy the positions predicted by the overlap and orientation principle. The copper atom is truly four-co-ordinate, the next nearest neighbours being four nitro-group oxygen atoms at 3.78 Å; the azide group is non-linear.

BIS-8-HYDROXYQUINOLINATOCOPPER(II) and the palladium analogue form a number of highly coloured compounds with various aromatic "electron-acceptor" molecules, such as

1,3,5-trinitrobenzene, picryl azide (I), and benzotrifurazan, in which there are two "acceptor" molecules to one molecule of the metal derivative. Whilst it is not impossible that these are six-co-ordinate copper co-ordination complexes, there is strong spectroscopic evidence that they are of the "polarisation bonded" or "charge-transfer" type.

The compound chosen for X-ray investigation was the picryl azide adduct of bis-8-hydroxyquinolinatocopper(II) because of the excellent quality of the crystals, and because of some intrinsic interest in the picryl azide molecule. The crystals are intensely coloured magentared pleochroic needles, stable in air, but decomposed after prolonged exposure to X-rays.

Crystal Data.—H₁₆C₄₀CuN₁₄O₁₄, $M = 860 \cdot 1$. Monoclinic prismatic $a = 16 \cdot 14 \pm 0.04$, $b = 30.93 \pm 0.08$, $c = 6.90 \pm 0.02$ Å, $\gamma = 105.6^{\circ} \pm 0.2^{\circ}$; U = 3320.8 Å³. $D_m = 1.709$,

^{*} Part II, B. Kamenar, C. K. Prout, and J. D. Wright, preceding Paper.

 $Z = 4, D_{\rm c} = 1.718.$ F(000) = 1980. Space group A2/a (C⁶_{2h}, No. 15, equivalent positions $x, y, z; \frac{1}{2} + x, y, -z; x, \frac{1}{2} + y, \frac{1}{2} + z; \frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} - z;$ plus centre). Cu-K_a radiation, $\mu = 20.96$ cm.⁻¹, single-crystal oscillation and Weissenberg photographs. Optically biaxial.

The non-standard space-group setting was used for computational convenience. The space group requires that the copper atom should be at a special four-fold position, either at a centre of symmetry or on a two-fold axis. The bis-8-hydroxyquinolinatocopper(II) molecule must therefore have a centre of symmetry or a two-fold axis; either is consistent with a planar molecule.

A three-dimensional Patterson function "sharpened to point atoms at rest" was computed from 1149 independent reflections. The distribution could only be interpreted on the assumption that the copper atom was on the two-fold axis at 1/4, 0,z, with z approximately 1/12, Minor peaks indicated positions for all light atoms except hydrogen.

The structure was refined by the method of least-squares by using a block-diagonal approximation to the normal matrix. Seven cycles were calculated. For the first three cycles, unit weights and isotropic temperature factors were assumed. After the third cycle, hydrogen-atom positions were estimated and included in the calculation, the weighting function

$$\sqrt{\omega} = \sqrt{\frac{1}{1 + \left(\frac{|F_o| - b}{a}\right)^2}}$$

with a = 30 and b = 107 on same scale as Table 1 was used, and anisotropic thermal motion was taken into account. The final reliability factor was 0.134 for observed terms.

FIGURE 1. The crystal structure projected down the a axis. The atoms outlined by the thicker circles are those of molecules nearer the viewer

Table 1 lists the observed and calculated structure factors based on the final atomic co-ordinates given in Table 2. The standard deviations are minimum values deduced from the block-diagonal approximation to the normal matrix. The thermal parameters are given in Table 3 and the atomic co-ordinates (in Å) referred to the orthogonal axes a, b^*, c , in Table 4. Interatomic distances with standard deviations derived from the formula of Cruickshank and Ahmed¹ are listed in Table 5. Inter-bond angles are shown in Figure 3. Their standard deviations according to the formula of Darlow² are about $1-2^{\circ}$.

The crystals contain isolated bis-8-hydroxyquinolinatocopper(II) molecules and isolated picryl azide molecules in the ratio 1:2. In the unit cell of the crystal, these molecules occupy four distinct planes parallel to the *ab* plane at heights z/c of approximately 1/12,

- ¹ D. W. J. Cruickshank and F. R. Ahmed, Acta Cryst., 1953, 6, 385.
- ² S. F. Darlow, Acta Cryst., 1960, 13, 683.

TABLE 1

Observed structure amplitudes and calculated structure factors for (*hkl*)

h	k	l	$5 F_{o} $	$5F_{ m c}$	ĥ	k	l	$5 F_0 $	$5F_{ m c}$	h	k	ì	$5 F_{\rm o} $	$5F_{ m c}$
0.	4	4	39	42			-2	<u>1</u> 62	176	2	-34	0	64	-60
0	Ś	Í	277	-275	I	-1 7	- 7	172	118	2	-33	-1	бі	-67
	5	3	93	80	ī	-13	- ĭ	43	57	2	-31	- I	73	-76
0	б	õ	240	284	ī	-14	-1	120	110	- 2	30	0	125	-118
		2	113	-101	-	- 1	-2	170	ICO	- 2	-27	T	 	-24
		A	-	-35	r	T 3		T25			-26		77	3
0	7	-т т	785	170	- T					2	-07		34 8r	
Ť	'	2	88	28	-	14		202	4-5 7 0 d	4	- 2 3		- C)	
^	8	0	+76	+ 8 x			- 2	<u>د و</u> ر س	65	4.	44	- 4	55	-+72
•	J	2	240	247	-	11		+ 2 2		_	-20		- / 2	
~	~		242	-22.	-			133	11.5	2	~ 3	-1		-87
0	9	1	350	<u>م</u> مر	1	-10	- 4	177	104	2	-22	0	114	-2+
~		د	150	144	1	-9	1	57	30.	2	-20		- 30 - 76	
0	10	-	240	210	I	-8	-4	57	59.			0	1/0	100
0	11	1	93	93			-2	225	200	2	-19	-1	147	-148
		3	100	07	I	-7	-3	23	I.5.	2	-18	0	177	-172
0	12	0	107	03			-1	247	-207	2	~17	-1	80	05
		2	80	70	I	-0	-4	31	54	2	- 1 6	-4	53	55
		4	41	-43			-2	383	44 ⁶			-2	118	-97
0	13	I	44	48	I	-5	-3	72	-8 I			0.	229	-226
		3	118	-108			-1	75	бı	.2	-15	-1	112	94
0	1 4	0	4 I	-r	I	-4	-4	72	-8 I	2	-14	-4	74	6 1
		2	121	112	I	4	2.	228	258		•	-2	120	-101
0	1 5	I	22I	183			4	43	43			0	483	-563
ο	ıб	0	97	82	I	5	I	95	-111	2	-13	- I	97	-80
Ó,	17	I	194	172		-	3	<u>`32</u>	-1 5	2	-12	-4	171	1 75
		3	74	-6 I	I	б	2	149	-1 48	-	-	-2	75	-66
0	18	0	158	124			4	ġ I	-107			0	360	-403
		2	I Š4	153	I	7	i	IŚA	-163	2	-11	- i	200	-286
ο	IQ	I	94	อีอี		•	3	03	6 I	2	-10	-1	45	50
0	21	ĩ	163	170	I	8	2	80	70	-	••	-2	71	62
0	22	ō	2 50	237	T	τo	2					õ	70	- 27
-		2	135	T31	-		4	44 7 2 P		2	-0	T	02	21 8 r
0	22		JJ 	- J 4 T 7 A			4	145	-202	2	-8		40	4 1
Ň	24	Â	272	214	1	T T	-	-95	-70	-	0		τúο	
~	#4	2	727	34-	-		5	90	70			~	-62	-6-8
		,	- J - T T 8		1	12	4	31	-00	2	-7		<u> </u>	66
^	25	4	***	***	1	13	3	57	-39	4	1		8.	
		-	114	115	I	14	2	125	-102		-6	-1	01	-77
0	20	0	107	94			4	32	-85	2		-4	02	115
0	20	0	50	51	I	15	I	100	-147			-2	109	-103
0	30	0	00	٥5			3	III	-100			0	197	-213
0	32	0	51	44	I	10.	4	50	-38	2	-5	-1	179	-133
0	30	0	133	113	I	17	I	116	-112	2	4	-4	107	124
	. 0	2	43	35			3	IIG	-103			-2	1 43	122
I	-30	-2	24	40	I	18	2	1 47	-134			0	263	-328
I	-37	-1	ρı	-2			4	47	-53	2	-2	-4	49	132
I	-36	-2	34	60	I	19	3	108	-100	2	0	4	34	-33
I	- 31	- I	46	54	I	20	2	73	-70	2	2	0	279	339
I	-30	-2	58	73	I	21	I	1 76	-1 74			4	97	-115
I	-28	-2	67	75			3	1 68	-183	2	3	I	III	-104
ĩ	-26	-2	74	5 I	r	22	2	286	-372			3	1 47	177
I	-25	-1	126	140	-		4	Iró	-105	2	4	0	241	245
I	-24	-4	91	101	T	23	3	103	- 00		•	.2	IGO	-145
	,	-2	103	118	- -	21	2	270	-200	2	۲	r	607	-621
r	-23	- ?	117	IOT	-		~ л	-19	-01	2	6	0	20	40
-7	- 3	-1	/	10	т	26	2	60	52	-	2	2	112	102
T	-22	- 4	67	43 7 i.	-	2.	~	6,	, , , , , , , , , , , , , , , , , , ,					22
-		-2	112	100	Ŧ	20	4	~4 ~6		2	7	4 T	44 ICT	160
I	-21	- 2	J 08	20	-	21	2	22	- c 2	2	8		118	-106
-	~ ~	-r		8.	Ť	26	2	دد ۲۳		2	5	2	1 . 6	-1 : 2
T	-10	- 2	9≞ 112		2	28	~	5⊥ 6∼	6				- 50	- 28
-	- 9	ر ۲		90 2	2	-27			-7-	2	~	4	216	-220
-			+ 2 2	- J U	2	-37		51		4	9		-40	- 39
+		4	.57	5	4	১১	. T	45	50			ാ	13	¥

Bailey and Prout:

TABLE 1 (Continued)

h	k	l	$5 F_{o}$	$5F_{c}$	h	k	l	$5 F_{o} $	$5F_{ m c}$	h	k	l	$5 F_{\rm o} $	$5F_{f c}$
2	10	0	57	94	3	-8	-4	54	-79	4	-35	- I	39	58
		2	III.	-7 I			-2	38	24	4	-33	-1	31	10
		4	32	39	3	-7	~ I	165	-1 52	4	-32	-2	39	43
2	II	I	43	40	3	-6	-4	64	-87			Э	104	107
		3	4 I	20			-2	199	-217	4	-31	-1	٥ī	32
2	12	0	4 54	-507	3	-5	-3	109	-98	4	-29	-1	60	74
		2	95	~ 99.			-1	87	80	4	-28	0	114	104
		4	44	31	3	-4	-4	23	-13	4	-20	0	87	92
2	13	I	50	-02	•		-2	121	I 37.	4	-24	-2	40	55
2	14	0	131	129	3.	-3	_3	40	-49	,				70
		*	55	54			-1	297	-314	4		1	54	50
•	• -	4	•64		3	-2	-4	140	-102	4	-21	- 7	104 6 T	20
2	• 5 • 6	1.	207	-227	2			57		7	~1	-1	0.8	02
4	10	2	29/ TOT	-88	3	1		242	-277	4	-2 à	-2	70	67
2	T 7	Ť	02	-84	. 0	•		44 S	~/1	-		0	1-	
2	т 8	ò	T 4 8	-127	3 2	T		~د ۲۲۸	100	4	-10	- T	140	157
-	••	2	70		<u>ل</u>	•	2		07	4	-18	-4	- 79	-12
		A	76	70	2	2	2	τ <i>ι</i> 6	1 63	т	-	ŏ	100	00
ż	IQ	T.	174	-201		-	1		- 5	4	-16	-4	118	-95
2	20	ō	294	-310	3	3	ī	330	386	•		-2	226	214
		2	I 33	-120	5	J	3	180	182			0	504	511
		4	88	82	3	4	2	48	-53	4	-15	-3	14 ⁸	-131
2	2 İ	ŗ	87	-80	3	5	3	200	221		5	-1	298	318
		3	52	42	3	š	2	9 I	82	4	-1 4	-2	223	200
2	22	ō	457	-528			4	33	44		-	0	190	1 68
		2	163	-152	3	7	3	74	-5.3	4	- ï 3	- I	453	524
		4	·II2	121	.3	8	2	1 93	175	4	-12	∹ 4	63	- 59
2	23	3	7 I	-60	•		4	113	93			-2	81	. 58
2	24	0	93	-61	3	9	I	103	90	4	-11	- I	I49	144
2	26	0	187	167			3	183	185	4	-10	-2	108	84
		2	54	60	'3	10	2	209	285			.0	I44	-125
		4	51	-40	•		4	83	78	4	-9	-3	48	-51
2	34	0	59	-42	3	11	3	107	152		•	-1	259	310
	~	2	31	-37	2	14		105	109	4	-8	0	84	-112
2	30	0	34	-12	ు	13	I	74	°4	4	-7	-3	37	-15
.3	-37	-1	45	-50	~		3.	44	45	4	-0	-4	27	30
3	-30	-2	54	-40	3	14	- 2	04	04				170	200
3	-30	-2	89	-02	3	15	1	44	37	,		- 2	541	514
3	-27	-3	05	-47.	~	•6	3	147	1 # 5 7 0 f	4	2		55 767	÷ 1 2 0
3.	-20	-2	80	-75	ు	10	<u>,</u>	1/9	-95	4	- 1	,	101	-24
3	-24			-57	ż	• -	4	70	6 T	7	4	-2	121	-138
5			15		2	- /	2	66	76			0	180	-543
2	-24	-2	112	-71	2	т 8	2	67	бт	A	- 2	-1	100	513
2	-20	-2	07		3	то 1	r	102	105	4	-2	-4	50	58
2	-10	-2	97	-81	3	- 9	3	152	165	-		ō	171	146
J	• 9	-T	95 61	-77	3	20	2	186	213	4	-r	- I	212	183
3	-17	-ī	92	66	-		4	97	92	4	0	0	161	136
3	-16	-4	IÍ3	-110	3	2 I	ŕ	33	-33	•		4	108	~1 24
Ũ		-2	343	-333	3	22	2	109	141	4	I	ī	402	425
3	-1 5	- 1	42	31	•		4	IIO	114	•		3	102	109
3	-14	-4	1 56	-1 5 5	3	2 3	I	59	⁵ 4	4	2	0	422	46 I
		-2	346	-308			3	77	63			2	110	8 9
3	-13	-3	331	- 34 1	3	24	2	132	-124		_	4	42	~ 4 5
		I	375	-427	3	25	I	56	42	4	3	I	47	-55
3	-12	-4	_4 I	-73			3	70	01		-	3	73	-54
~		-2	142	-138	3	27	I	68	70	4	4	0	88	77
3	-11	-3	IIO	-113			3	00	<u>5</u> 8			4	30	25
3	-10		91		4	-30		07	39	4	5	1 2	344	379
3	-9		107	-175	4	-26		37	51		6	د م	100	100
		-		J + 4	4	ి			, 0	т т	-	-		91

.

TABLE 1 (Continued)

h	k	l	$5 F_{o} $	$5F_{ m c}$	h	k	l	$5 F_{\rm o} $	$5F_{ m c}$	h	k	l	$5 F_0 $	$5F_{ m c}$
		2	44	50			-2	54	o' 3	6	-2 I	- I	84	-82
		4	98	-83	5	-11	-3	72	110	б	-19	- I	1 54	-162
4	7	ŕ	76	- 59	-		-1	114	135	б	-17	- I	182	-1 88
•	•	3	39	ĩŚ	۲	-10	-2	64	45	б	-16	0	192	-210
4	8	õ	740	800	3	-0	- 3	18ċ	170	б	-15	- r	200	-223
Ŧ		2	IJI	127	5	-3	-4	77	60	6	-14	-4	63	58
		A	137	-125	5	•	-2	707	70		•	-2	τύο	-131
A	0	T	450	173	۲	7		100	100			0	274	-302
	9	2	4 J C A	65	2	'		178	175	6	- 1 3	T	730	-101
	TO	5	132	T 36	ب			1/0 1/4	110	6	- 12	ō	120	-1 40
4	10	ŭ	107	-121	2	5		-44	119	6				- 40
		4	107	160	_					Ŭ			270	49
4	11	2	1/0		5	-4		170	151	6				~) · 7 ?
	• •	2	92	57	5	-3	-3	4	- 00	0	-10	4	29	60
4	12	0	94		5	-1	-3	I 59	104			- 2		
4	14	<u> </u>	.94	110			-I	213	205	~			204	-200
4	тş	L	7.0		5	0	2	232	-209	0	-9	-1	219	-230
		3	04	-49			4	65	-48	¢	-8	-4	53	50
4	10	2	97	80	5	I	I	1 43	152			-2	84	-01
4	17	I	191	ISS			3	108	- 94			0	94	91 2
4	18	2	74	-08	5	2	2	123	-1 43	6	-7	-3	99	63
4	19	I٠	57	20			4	47	-30			- 1	446	-515
4	20	. 0	1 75	I 53	5	3	I	232	-235	6	-6	-2	69	69
		2	120	130	-		3	183	-223	_		0	199	-165
4	2 İ	I	60	85	5	4	4	6 0	-73	6	-5	-3	51	39
4	22	.0	61	-35	Š	5	ŕ	125	-129			- I	216	224
		2	6 o	45	5	5	3	95	- 96	6	-4	-4	70	56
4	23	I	1 83	165	5	6	2	338	-378		•	-2	1 49	-105
4	25	I	IIS	123	5		4	101	-03			0	278	-270
4	27	I	100	97	r,	7	T		-02	6	-3	-3	54	43
À	30	0	48	57	5	4		T 06	-218		Ŭ	-1	44	30
	31	I	49	50	۲	8	2	221	-330	6	-2	-2	45	41
Å	32	ō	37	41	2	Ŭ	~	1 5 2	-1-2			0	3/2	336
7	37	0	37	67	-	~	7r T	202	-2 - 2	6	1	- 3	78	-75
4		T	22		2	9	-	738	-208		•		2.32	
2	-24		22	70	-	70	د م	6	60	6	•	÷	200	-162
2	-20		. 20	2.2	2	10	4	9		Ū	Ŭ	~	200	• ~ J
2	-2-		21	54	2	11	1	- C O	134			2		ں ر ۳۳
5	-3 I	- 3	94	90	_		3	100	-192	6	-	4	- 50	
		-1	84	0.7	5	12	2	00	34	6	1	-	100	
5	-29		<u>د م</u>	94	5	13	3	50.	30	0	2	0	139	-115
	•	-1	01	72	5	14	4	03	-09			2	144	-147
5	-28	-2	90	98	5	15	I	133	-132	~		4	67	03
5	-25	-3	77	· 81			3	90	-78	6	3	I	320	-398
		~1	60	70	5	17	3	63	-07			3	05	30
5	-22	-4	72	53	5	1 9	I	59	-04	స	4	0	180	-175
		-2	75	77	5	21	I	112	-112			2	32	-37
5	-2 I	-3	102	I I 5	5	23	I	75	-90	-		4	39	40
		- I	125	II 5			3	300	-110	6	5	I	75	-92
5	-19	-3	59	79	5	£ 5	I	9 'I	-62		_	3	99	្ខរ
		-1	<u>5</u> 1	52			3	95	-61	6	6	ο.	53I	-609
5	-1 8	-4	68	92	5	27	3	70	-55			2	231	-255
		-2	1 44	129	5	29	3	33	-27			4	8 I	77
5	-1 7	-3	142	120	б.	-36	0	62	-73	6	7	I	270	-316
		- I	1 50	131	6	-35	-1	49	-65	6	8	0	I42	I 30
5	-1 0	-4	87	70	6	-34	0	48	~ 53			2	26	-17
		-2	1 34	III	б	-23	~1	र र	- 39			٨	54	41
5	-15	-3	252	266	6	- 32	ō	08	-72	6	0	I	347	-385
	5	-1	IQT	201	6	- 2 I	-1	ICI	-182	б	ιó	4	62	-43
5	-14	-1	122	121	6	-28	- 0	- 33	-00	б	T.T	- T T	22	-60
5		-2	131	139	6	-2 <	- I	60	-78	6	12	ō	162)121
5	-13	-3	ISA	165	6	-23	T	6 e	-66	6	т?	7	8 <	-88
2		-1	133	142	6	-22		61	6,	6	тл Тл	Ô	170	-161
۲	-12	- /		 5 A	U		4 0	202	-150	5	- 4	2	-,0	-80
.,		4	79	2.4			•		- 59			~	90	

Bailey and Prout:

TABLE 1 (Continued)

h	k	l	$5 F_0 $	$5F_{ m c}$	h	k	l	$5 F_{\rm o} $	$5F_{ m c}$	h	k	l	$5 F_{\rm o} $	$5F_{ m c}$
6	1 5	3	53	43	7	3	I	II 2	86	8	-11	-3	58	-56
6	17	r	123	-146			3	207	193			-1	131	i 37
6	21	I	172	-182	?	4	2	1 56	171	8	-10	-4	59	-75
6	22	0	69	-84	-		4	102	110			-2	26	-35
6	24	0	156	-1 53	7	5	I	143	143			0	108	103
6	25	I	83	-69	-	6	3	47	50	8	-9	-3	79	52
6	26	2	43	6	1	0	2	74	77	-	-	- I	446	400
6	28	0	76	-95	7	-	4		72	8	8	-2	25	47
6	29	I	73	-58	1		2	200	2 7 2	•		0	78	32
6	30	0	84	-109	7	8	2	66	~13 6 T	0	-7	<u>-</u> 3	01	-00
	32	0	57	-02	.*	-	4	- 5 16	68	9	-6	- <u>-</u>	73	-53
7	-35	-3	30	-20	7	Q	ī	71	53	0	-0	-4	57	-40
1	55		22	93	•	,	3	LII	IOO			4	1 3 4 1 0 0	27
7	-22			-77	7	IO	2	74	71	8		-3	68	.07
7	- 3 E	-3	63	-82			4	59	70	Ŭ	2	~ 7	208	-262
'	5-	-ĭ	53	-78	7	II	Í	96	110	8	-1	-2	290	-34
7	728	-2	60	- 56			3	66	62	•	4	- 0	121	131
7	-25	-3	92	-88	7	I 2	2	72	8 o 8	8	-3	-3	68	-55
	-	~ I	80	-102	7	13	3	99	119	8	-2	-4	50	-55
7	-2.4	-2	67	-69	7	14	2	101	⁸ 7			-2	1 55	120
7	-23	-3	58	-49	7	IŞ	ï	58	60			0	208	152
7	-22	-2	97	-99	7	16	2	53	58	8	- I	0	208	152
7	-2I	-3	75	-77	7	17	I	54	7 I	8	- I	- 1	248	260
		-1	31	-34			3	53	59	8	0	0	39	38
7	-19	-3	100	-110	./	19	3	32	34			2	50	-62
~		-1	94	-90	7	21	1	02	12	•		4	58	-06
4	-16		124	-122	7	~ ~ ~	2	31	40	8	I	I	114.	109
7			742		1	22	2	4-	59			3	50	43
'	+ 2		142 TT6	- 1 2 7	7	23	2	د م د م	04 06	0	2	0	352	344
7	T /		83	- 06	.7	26	2	89	40			2	109	2
'		-2	136	-151	. 7	27	I	4ć	49	8	2	4 7	49	22
7	-13	-3	I 54	-197	7	30	2	Ġı	48	8	4	2	9- 8-	72
•	•	-ī	127	-138	-3	-38	0	74	62	8	т с	ī	179	182
7	-12	-4	80	-78	8	-37	- I	31	38		5	3	45	-40
		-2	1 68	-178	8	-35	- I	27	55	8	б	ŏ	228	235
7	-11	-3	93	-94	8	-34	0	119	104			2	56	68
		-1	109	-107	.8	-33	<u>–</u> 1	82	40			4	4 I	30
7	-10	-4	51	-52	.8	-30	0	91	90	8	7	I	84	77
		-2	102	-92	_8 8	-29	-1	80	~52	8	8	0	246	266
7	-9	-3	200	-302	0	-20	~	49	55			2	92	89
		~1	349	-330	0	-2.7	-1	02	89			4	75	-80
_	~ 7				8	-20	~	122	7 26	8	9	I	171	170
7	-7		+ 86		8	-23		84	- J C F	0	10	0	101	173
7	-6	-,	6.	- / 1	8	-20	-2	÷4 د ت	2 - J 8 k			4	49	
'	Ũ	-2	-)	- 4 7	-		õ	8 I	75	8		4	4.5 TAG	J ~
7		-3	260	230	8	-19	- I	1 57	142	8	T2	ō	140 TT2	-43 II7
'	5	-ī	107	III	8	-18	-4	85	-77	· ·		2	32	-19
7	-4	-4	73	-55			ò	7 Ğ	77	8	13	I	71	73
·	•	-2	67	-30	8	-17	- I	98	9 I	8	= J I 4	ō	108	99
7	-3	-1	39	56	8	-16	-4	53	-48		•	2	83	85
7	-2	-2	121	III			-2	83	83	8	16	0	74	84
7	-1	-3	146	-170	0		0	104	180	8	18	0	69	79
_	-	-1	208	-208	0 0	-15		232	250	8	21	I	86	80
7	0	2	133	140	0	14	-2	205	207	8	22	٥	IIO	125
~		4	• 6 0	91	8			200	-82	8	23	I	58	50
1	+	2	88	-54	0	د⊾	د ۲ —	IAA	I/O	8	24	• •	93	°4
7	2	2	134	142	8	-12	-2	156	226	0 2	25	r t	40	54
•		4	36	29			0	227	218	8	28	0	81	62

h	k	l	$5 F_{o} $	$5F_{f c}$	h	k	l	$5 F_0 $	$5F_{f c}$	h	k	l	$5 F_0 $	$5F_{ m c}$
9	-33	-3	34	46	9	1 5	3	77	 62			4	б о	70
9	-28	-2	72	76	9	IÓ	2	68	-6 I	IO	3	I	98	-108
9	-27	-3	69	8 2	9	1 7	3	II 4	117	IO	4	0	120	-151
9	-25	- I	34	60	9	18	2	54	-49	_		2	43	-07
9	-23	-3	1 53	130	9	20	2	32	-61	10	5	3	50	54
		-1	122	138	9	22	2	00	-74	10	5	0	62	-72
9	-2 I	-3	133	119	9	23	I	43	-57	10	7	I	83	-80
		-1	87	83			3	45	-49	To	Q	5	04	-47
9	-20	-4	121	137	9	24	2	30	-52	10	0	2	411	-200
~			204	201		-24	2	50		IO	τo	ő	128 128	-106
9	19		60	51	10	-34	- T	44	- 1			2	A Q	7100
0	- 1 7		02	100	.10	-20	-2	6 T	43 -66	IO	II	I	III	-135
2	- /	- ī	9- 61	43		5 -	ō	58	-83	IO	12	0	48	-50
9	-16	-2	78		IO	-29	- I	ទ័ទ	-87	Io	1 3	I	ίı	-79
9	-15	-3	ίo	65	IO	-28	0	55	-93	Io	14	0	107	-110
-	5	-1	52	32	IO	-26	-2	85	-75	Io	IÓ	0	99	-99
9	-14	-4	75	86			0	III	-101			2	54	-67
	•	-2	98	103	IO	-25	- I	109	-111	IO	17	I	86	Ιού
9	-1 3	-3	85	74	IO	-24	0	105	97	IO	18	0	116	-124
	-	~ī	1 45	I34	10	-23	-3	46	rS	IO	19	I	59	-96
9	-12	-4	Śž	6 8			-1	198	-244	IO	20	٥	40	-46
		-2	103	124	10	-22	-4	71	79	IO	2 I	I	43	-86
9	-1 I	-3	94	104				112	-109	10	22	0	54	- 64
9	-10	-2	1 48	167	To			299	-340	IO	24	0	34	-51
9	-9	-3	131	119	10	-2.0	-,	80	52 TO F	IO	20	0	82	-70
~	9	-1	IIO	93		2.0	- 3	107		11	-32	-2	58	-04
9	0	-4	50	50				217	-205	11	-31	-3	44	-50
~	- 7		90	-99	Io	-10	-3	-47 AT	-95	11	29		49	-73
9	1	د 	100	-74		-)	-ĭ	 9.0	II.	TT	-28		ττ.	
9	-6	-1	50	/4 52	IO	-18	-2	65		11	-26	-2	72	-60
1	-	-2	130	136	•		0	87	Ğ4	II	-25		128	-130
9	-5	- I	132	-110	IO	-1 7	-3	40	-38	-	- 5	ī	87	-00
9	-4	-2	ISS	162	IO	-1 5	I	89	-84	II	-24	-2	80	-88
9	-3	-3	1 47	110	Io	-14	-2	97	-72	II	-23	-3	95	-98
		- I	IŜI	131			0	24 I	-228			-1	75	-80
9	-2	-4	50	44	IO	-12	-2	38	-52	II	-22	-4	86	-112
		-2	120	117			· 0	1 75	-201			-2	1 99	-267
9	- I	-3	141	120	10	-11	-3	48	-42	II	-2I	-3	99	94
9	0	2	77	-77	10	-10	-4	75	71			- I	113	III
9	I	I	44	-39			2	110	-123	II	-20	-2	47	-61
		3	82	-87	τo		-2	207	-20	II	-19	-3	82	82 97
9	2	2	110	-132		9	-1	39	-68			1	6.	07 5 4
0	2	4	70		IO	-3	- 0	21/	-213	11	-10	-4	10	- ⁰ 4
9	3	• <u></u>	79	-84	IO	-7	I	80		T T		-2	110	-110
۵		2	87	-70	IO	- 6	-4	83	72	 I T	- T A	-2		-00
à	7 5	ĩ	тт8	-101			-2	83	-74	11	-12	-4	67	-85
1	J	- 3	171	-1<1			0	23I	-190			-2	83	-104
9	6	2	79	-101	IO	-5	- I	76	-ć4	II	-11	-3	94	-124
9	7	I	43	-55	IO	-4	-4	4 I	53			- ī	73	-80
9	8	2	213	-265			-2	76	-73	II	-10	-2	IÇQ	-149
		4	86	-102			0	24 I	-210	II	-7	-3	92	-85
9	9	I	5 ⁶	-62	10	-3	-1	152	-136			- I	181	-1 44
		3	1 43	-149	10	-2	0	1 75	-118	II	-6	-4	54	-67
9	10	2	52	-68	IO	- I	-3	05	59	_		-2	90	-78
9.	II	I	77	-70		-	-1	03	-12	II	-5	-3	150	-155
~	T 2	3	01	-106	IO	0	0	05	-39	1 7	4		71	
У	14	4	90 6 -	-74	*^		2 T	93 T = 6	-101		4	-4 -2	14 161	-1/8
a	12	4	16	-62	In	2	ō	-) - 2 I 3	- 70	II	-3	-3	92	-107
,	- 5	5	7	- 5	•			- 5	- / /		-		-	•

Bailey and Prout:

TABLE 1 (Continued)

h	k	l	$5 F_{o}$	$5F_{c}$	h	k	l	$5 F_{o} $	$5F_{ m c}$	h	k	l	$5 F_{o} $ $5F_{c}$
		-1	72	- 7 I	12	2	0	251	204	I 3	1 4	2	37 - 53
II	- I	-3	1 88	-1 84			2	103	92	IJ	17	3	48 -73
		- I	19 6	-204			4	ćι	-73	I 4	-28	0	70 -71
II	0	2	103	95	12	3	I	1 67	-190	I4	-26	0	56 -56
II	I	I	62	83			3	77	76	14	-25	-1	80 -97
		3	129	142	12	4	ō	201	-132	I A	-23	1	78 - 82
II	2	2	187	207		•	2	III	-130	 I 4	-21	I	67 -83
		4	82	95	12	7	r	IT 3	T 27	 I A	-20	ō	61 - 30
II	3	3	112	-120	12	ś	-	207	218		17	T	87 -00
IT	7	3	77	0.0		-	2	80			r á	-2	31 -0
II	8	2	105	TTO	12	τo	0	172	T82	14 14	T 4	0	1 34 −1 36
	-	Λ		80	• •		2	-13	3.6	±4 1.4	- 17	T	103 -107
тт	τo	~ ~	101	++0	T 2	T 2	~	44	4 1	- 4 T 4	- 12	ā	103 -120
TT	T T	2	8	77	12	12	÷	18	15		~10	õ	1 39 1 39
TT	T 2	د	20	15				40	94	-4			103 103 120 Tak
	- 3	2	45		12	14	0	114	127	14	_9	1	124 95
	14	2	- 09	102	12	IŞ	I	40	43	14	-0	~	92 -73
11	10	. 2.	52	70	12	10	0	58	72	14	-7	-1	103 -79
11	IO	2	30	50	12	18	0	33	44	14	-5	-2	100 -107
12	-30	0	02	37	I 3	-30	-2	33	45			0	155 -205
12	-34	. o	109	100	13	-29	-3	53	66	14	, 5	-1	55 -90
12	-32	Q.	87	83	13	-28	-2	63	76	14	-4	-2	85 64
I 2	-30	0	97	89	I 3'	-26	-2	б2	69	14	-3	-3	77 - 51
12	-29	<u> </u>	68	102	I3	-24	-2	46	68	_		-1	103 -103
I 2	-28	-4	- 50	-40	I3	-23	-3	49	47	14	-2	-2	6 0 - 58
		0	148	148	13	-17	-3	82	78			0	105 -90
12	-26	ò	135	141		•	- I	87	80	I4	-1	- I	109 90
I 2	-25	- I	124	1 38	I 3	-15	-3	52	53	I4	0	0	179 -129
12	-24	÷-4	59	-70	-	•	-ī	68	62			2	74 -42
L.		o	105	107	13	-14	-2	48	27	1 4	3	3	63 46
12	-22.	-2	85	85	IJ	-13	- 3	71	81	14	5	I	182 -205
		0	253	24ŏ	- 5	- 5	-r	бī	60	I4	7	I	125 -93
12	-21	- r	108	-115	13	-12	-2	8 -	08	I4	8	0	89 -100
12	-20	-2	68	-70	13	-11	-3	77	70			2	70 -77
		0	130	-145	- 5			тт т	121	14	IO	0	92 -77
T 2	- 10	T	68		I 2	-10	- 2	T 7 T	+62			.2	30 -35
T 2			101	.57	- J T 2	-0	- 2	- 1 -	60	I4	II	r	
T 2		â	60	100	- J T 2	-8	-2	1/	100	I4	12	ō	
12			- 0.0		- J T 2	-7	- 2	105	109			2	26 -17
10			ر شيا م	155	- 5	1		120	131	IЛ	13	т т	53 -69
14	- 4		70	97	τ 2	-6		6.	110		- J T r	Ţ	28 -77
T 2	- 7 2	-0	110	°4	÷ 3	Ŭ	-4		73	- 4 T c	-20		12 - 1 2
14	13	3	5 4	-45				111	114	- J T F		-2	43 43
		-1	53	47	15	-5		79	.99	•) • •	-27		55 54
12	-12	0.	104	78	13			150	121	- 5	<i>"</i>)		-2 -5-
12	-11	-r	175	185	13	-3		140	1 35		-		55 95 65
12	-10	-2	125	123	13	0	2	142	-1 49	15	-25		09 -00
• •		0	240	253			4	81	-90	15	22		54 - 39
12	-9	-3	76	~52	13	I	I	1 55	165	15	-20	4	50 -03
• •	•	-1	84	00			3	189	184	15	-15	-3	67 -30
12	-8	-2	117	121	13	3	I	99	94	15	-14	-2	131 -148
		0	219	189			3	52	46	15	-13	-3	44 - I3
12	-7	~ I	242	221	1 3	4	2	112	118	15	~12	-2	00 -5I
12	-0	0	64	99	13	5	I	128	-12.3	IS	-7	-3	80 -77
12	-5	- I	163	1 49			3	125	-108	1 5		-2	79 - 91
12	-4	-4	6 I	-64	1 3	6	2	95	-72	1 5	-5	-3	63 -50
		-2	117	ΙΟύ	13	7	I	56	-66	1 5	-3	-3	44 -25
		0	219	193			3	115	-117	1 5	-2	-2	100 -89
I 2	-3	- I	126	118	I 3	8	2	104	-113	1 5	- I	-3	44 -32
I 2	-1	-3	64	-49	I 3	9	3	49	-60	1 5	I	I	124 III
		-1	28 I	222	I 3	10	2	7 I	-84			3	96 79
12	0	0	265	253	1 3	II	3	49	-70	1 ,5	3	3	53 77
		2	119	II 4	13	12	2	50	-65	15	5	I	77 67
12	I	I	1 55	-172	13	I 3	3	78	-100			3	90 93

TABLE 1 (Continued)

h	k	l	$5 F_{o} $	$5F_{ m c}$	h	k	l	$5 F_{\rm o} $	$5F_{ m c}$	h	k	l	$5 F_{\rm o} $	$5F_{ m c}$
1 5	6	2	6 1	17	1 6	0	0	11 7	115	Iб	-3	- I	89	9 I
15	7	3	43	4 I	1 6	-1 7	- I	7 I	9 I	1 6	-2	ं०	60	77
15	8	2	58	6 I	1 6	- I Ś	0	100	II4	1 6	-1	- I	129	1 37
15	9	3	50	72	16	-1 2	0	120	-119	IQ	I	ī	8í	IOI
15	IÓ	2	44	51	1 6	-10	0	86	-54	1 6	2	0	76	59
15	II	3	45	43	IQ	-7	- I	79	75	Iб	8	0	80	55
16	-26	0	64	70	IС	-6	-2	86	80	IG	10	0	74	7 I
1 6	-24	-2	57	57		•	· O	68	78	17	-26	-2	54	۲8
1 6	-23	-r	52	8 I	IС	-5	~1	79	85	17	-24	-2	32	43
IΟ	-22	G	54	40	īб	-4	· 0	60	66	17	-22	-2	रंद	74
			- •	•		-1				- /	 T	2	48	-63

TABLE	2
-------	----------

Atomic co-ordinates (\times 10⁴) and standard deviations (\times 10⁴)

	x a	$\sigma(x a)$	y/b	$\sigma(y/b)$	z c	$\sigma(z/c)$
Cu	2500	0	0	0	878	5
C(1)	2661	7	899	3	811	21
C(2)	2529	7	1326	4	739	27
C(3)	3224	7	1720	3	740	22
C(4)	4081	6	1699	3	948	26
C(5)	4218	7	1275	4	913	23
C(6)	5049	6	1195	3	1104	24
C(7)	5143	7	768	4	1193	24
C(8)	4394	6	389	3	1041	22
C(9)	3508	5	883	3	878	20
M(1)	3621	4	447	2	927	17
O(1)	2018	3	514	2	740	15
C(10)	8220	6	874	3	4228	24
C(11)	9040	5	799	3	4038	22
C(12)	9778	5	1145	3	3930	23
C(13)	9687	6	1579	3	4127	25
C(14)	8903	6	1679	3	4299	24
C(15)	8194	5	1321	3	4328	23
N(2)	9084	5	335	3	3802	20
N(3)	536	5	1941	3	4165	20
N(4)	8999	6	2157	3	4265	20
N(5)	8450	6	2309	3	5078	18
N(6)	8036	8	2513	3	5696	25
N(7)	7299	6	1382	3	4264	21
O(2)	8461	5	35	3	4116	20
O(3)	9782	6	273	3	3455	18
O(4)	5664	5	2182	3	4515	19
O(5)	988	5	1943	3	2757	18
O(6)	7191	5	1723	3	3703	19
O(7)	6707	5	1067	3	4714	22

5/12, 7/12, and 11/12. Each plane contains metal complexes and picryl azide molecules also in the ratio 1:2 (Figure 1). The resulting arrangement is such that metal complexes alternate with pairs of picryl azide molecules in stacks perpendicular to the *ab* plane. The periodicity of the stack is the crystallographic *c*-spacing and the picryl azide molecules are approximately mid-way between the metal complexes. The crystal has therefore a structure characteristic of a "polarisation bonded" or "charge-transfer" adduct. There is no co-ordinate linkage between the copper atom and the picryl azide molecule.

In this crystal, in which the crystallographic diad axis passes through the copper atom, bis-8-hydroxyquinolinatocopper(II) has the shape of a two-bladed propeller of small pitch. Each 8-hydroxyquinoline residue is itself planar within experimental error, the deviation of any atom from the best plane not exceeding twice the standard deviation of its z-coordinate. The mean and maximum deviations are 0.02 and 0.036 Å, respectively. There are no anomalous interatomic distances within the residue (Figure 3). The angle between

TABLE 3

Thermal parameters (× 10⁴). The temperature factor, T, is equal to $2^{-(b_{11}h^2 + b_{22}k^2 + b_{32}l^2 + b_{13}hl + h_{23}kl)}$

	b11	b_{22}	b_{33}	b_{23}	b_{13}	b_{12}
Cu	34	$1\overline{0}$	545	0	0	9
C(1)	78	13	337	-5	-86	3
C(2)	55	17	729	8	75	33
C(3)	69	14	372	38	29	23
C(4)	54	11	782	36	-16	13
C(5)	66	17	451	-2	-11	27
C(6)	51	11	683	-55	48	7
C(7)	46	18	688	23	47	11
C(8)	34	12	479	-21	-30	5
C(9)	27	18	385	5	78	10
N(1)	24	13	439	5	-53	5
O(1)	22	13	651	39	-14	23
C(10)	30	17	643	-6	51	9
C(11)	25	13	593	13	47	18
C(12)	13	15	637	5	7	8
C(13)	35	16	688	47	112	3
C(14)	31	12	728	-12	24	16
C(15)	19	15	586	4	-15	5
N(2)	40	13	804	-16	-8	-5
N(3)	47	15	641	27	36	11
N(4)	69	14	603	22	24	17
N(5)	60	13	547	-18	-2	27
N6	134	18	826	19	67	39
N7	62	20	613	20	60	25
O(2)	76	19	1009	-12	-6	19
O(3)	91	18	865	16	69	36
O(4)	74	21	812	40	75	-1
O(5)	58	21	783	44	147	10
O(6)	74	22	1001	3	53	47
O(7)	49	27	1228	9	39	10

TABLE 4

Atomic co-ordinates (in Å) referred to the orthogonal axes a,b^*,c

	X'	Y'	Z'		X'	Y'	Z'
Cu	2.950	0.000	0.606	C(13)	11.430	4.709	2.848
C(1)	3.140	2.681	0.560	C(14)	10.505	5.007	2.966
C(2)	2.984	3.954	0.510	C(15)	9.669	3.939	2.986
C(3)	3.804	5.129	0.511	N(2)	11.939	0.999	$2 \cdot 623$
C(4)	4.977	5.066	0.654	N(3)	0.632	5.788	2.874
C(5)	5.992	3.802	0.630	N(4)	10.619	6.432	2.943
C(6)	5.958	3.563	0.762	N(5)	9.971	6.885	3.504
C(7)	6.069	$2 \cdot 290$	0.823	N(6)	9.482	7.494	3 ∙930
C(8)	5.185	1.150	0.718	N(7)	8.613	$4 \cdot 121$	2.942
C(9)	4.125	2.633	0.606	O(2)	9.984	0.104	$2 \cdot 840$
O(1)	4.273	1.333	0.640	O(3)	11.543	0.814	2.384
N(1)	2.381	1.533	0.511	O(4)	6.683	6.507	3.112
C(10)	9.700	2.606	2.917	O(5)	1.166	5.794	1.902
C(11)	10.667	2.383	2.786	O(6)	8.485	5.138	2.555
C(12)	11.538	3.414	2.712	O(7)	7.914	3.182	3.253

the least-squares best planes of the pair of 8-hydroxyquinoline residue in any one copper complex is approximately 7°. The copper-nitrogen bonds are equal in length to the copper-oxygen bonds within the limits of error of the determination.

The nearest atoms to the copper atom, other than those within the bis-8-hydroxyquinolinate-complex are two pairs of oxygen atoms O(2) of four different picryl azide molecules at 3.77 and 3.78 Å. Neither pair of oxygen atoms completes an octahedral co-ordination sphere about the copper atom. It is, therefore, truly four-co-ordinate and nearly planar (Figure 4).

The propeller-shaped complex is sensibly different from the bow-shaped molecule

TABLE 5

Inter-atomic distances with standard deviations in parentheses

(a) The bis-8-hydroxyquinolinatoco	pper(II) molecule		
Cu-N(1)	1.96(0.01)	C(4)-C(5)	1.39(0.02)
Cu-O(1)	1.95(0.01)	C(5)-C(6)	$1 \cdot 44(0 \cdot 02)$
C(1)-C(2)	1.40(0.02)	C(5)-C(9)	1.43(0.02)
C(1) - O(1)	1.35(0.02)	C(6) - C(7)	1.37(0.02)
C(1) - C(9)	1.38(0.02)	C(7) - C(8)	1.44(0.02)
C(2) = C(3)	1.42(0.02)	C(8) = N(1)	1.31(0.01)
C(3) - C(4)	1.41(0.02)	C(9) = N(1)	1.38(0.02)
(b) The picryl azide molecule			
C(10)-C(11)	1.41(0.02)	$N(2) - O(2) \dots O(2)$	1.19(0.02)
C(10) - C(15)	1.39(0.02)	$N(2) - O(3) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	1.22(0.02)
C(11) - C(12)	1.37(0.02)	$N(3) - O(4) \dots$	$1 \cdot 16(0 \cdot 02)$
C(11)-N(2)	1.47(0.02)	$N(3) - O(5) \dots O(5)$	1.21(0.02)
C(12) - C(13)	1.39(0.02)	N(4) - N(5)	1.24(0.02)
C(13) - C(14)	1.39(0.02)	N(5) - N(6)	$1 \cdot 12(0 \cdot 02)$
C(13) = N(3)	1.52(0.02)	$N(7) = O(6) \dots O(7)$	1.18(0.02)
C(14) = C(15)	1.46(0.02)	N(1) = O(1) = O(6)	2.59
$C(14)^{m}N(4)$	1.51(0.02)	$N(5) \cdots O(6) \cdots O(5)$	2.08
$O(10) I(1) \dots \dots \dots$	1 51(0 02)	$N(6) \cdots O(6)$	2.82
		$N(6) \cdots O(5)$	3.09
(c) Between bis-8-hydroxyquinolin	stocopper(II) and picry	Il azide molecules	
$C(2) \cdots N(7)$	3.48	$C(6) \cdot \cdot \cdot C(12)$	3.45
$C(2) \cdots N(7)'$	3.48	$C(6) \cdots C(12)$	3.50
$C(2) \cdots O(6) \qquad \dots \dots \dots$	3.34	$C(7) \cdots O(7)$	3.45
$C(2) \cdots O(7) \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad $	3.42	$C(8) \cdots N(2) \ldots \ldots \ldots$	3.38
$C(3) \cdots N(3) \cdots C(4)$	3 .30 9 .90	$C(8) \cdots C(3)$	3.10
C(3) + C(4)	3.40	$C(9) \cdots C(10)$	3.41
$C(3) \cdots C(14)$	3.29	C(9) - C(10)	0 11
	· · · ·		
-(,,			
All other contacts between molecule	s are longer than these		
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3 ·78	Cu····O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3 ·78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3 .78	Cu · · · O(2)	3 .77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3 .78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule Cu · · · O(2)	s are longer than these 3 .78	Cu · · · O(2)	3.77
All other contacts between molecule Cu · · · O(2)	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule Cu ··· O(2)	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule Cu · · · O(2)	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule Cu · · · O(2)	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule Cu · · · O(2)	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule Cu · · · O(2)	s are longer than these 3.78	Cu · · · O(2) $O_{1}^{(7)}$ $O_{2}^{(6)} \stackrel{2}{\sim} \stackrel{2}{\sim} \stackrel{2}{\sim} O_{2}^{(6)}$ $3^{A2} \stackrel{2}{\sim} 3D^{2} \stackrel{2}{\sim} \stackrel{2}{\sim} \stackrel{2}{\sim} O_{2}^{(6)}$ V_{10}	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2) $O_{1}^{(7)}$ $O_{2}^{(6)} = \frac{1}{29} + \frac{1}{100} + \frac{1}$	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2) $O_{1}^{(7)}$ $O_{2}^{(6)} = \frac{2}{\sqrt{2}} e_{-\mu(6)} = \frac{3}{\sqrt{2}} \frac{2}{\sqrt{6}} O_{1}^{(6)}$ $(45)^{2} \frac{2}{\sqrt{6}} O_{1}^{(5)}$ $\mu(4)$ $(5)^{2} \frac{2}{\sqrt{6}} O_{1}^{(5)}$	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu ··· O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	Cu · · · O(2)	3.77
All other contacts between molecule $Cu \cdots O(2) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	s are longer than these 3.78	$Cu \cdots O(2)$	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	$Cu \cdots O(2)$	3.77
All other contacts between molecule $Cu \cdots O(2)$	s are longer than these 3.78	$Cu \cdots O(2)$	3.77

FIGURE 2. The crystal structure projected down the c axis, showing the relative arrangement of atoms in donor and acceptor molecules

observed in the five-co-ordinate dimeric form of bis-8-hydroxyquinolinatocopper(II) itself ³ or the planar molecule in the bis-8-hydroxyquinolinatocopper(II)-benzotrifuroxan adduct.⁴ This is probably indicative of no more than the flexible nature of this co-ordination complex. Figure 5 shows the picryl azide molecule projected on to, and perpendicular to,

FIGURE 3. Inter-bond angles

the least-squares best plane of the benzene ring. The mean and maximum deviations of the ring-carbon atoms from this plane are 0.012 and 0.022 Å, respectively. The plane of the benzene ring and the plane of the quinoline system are only 2° out of parallel. The planes of the nitro-groups at C(11), C(13), and C(15) and the azido-group at C(14) make

³ G. Polinck, Acta Cryst., 1964, 17, 687; F. Kanamaru, K. Ogawa, and I. Nitta, Bull. Chem. Soc. Japan, 1963, 36, 422; J. A. Bevan, D. P. Graddon, and J. F. McConnell, Nature, 1963, 199, 373.
 ⁴ H. M. Powell and C. K. Prout, following Paper.

their respective angles of 7, 58, 14, and 20° with the benzene ring. The nitro-group at C(11) is out of plane in the opposite sense to the other three groups.

The benzene nucleus has internal angles greater than 120° at the carbon atoms attached to nitro-groups. In isolation, these differences are probably within the error of the determination but, when looked at together with other recent results 5-9 from work on nitrobenzene derivatives (Figure 6), they must be presumed to represent a real effect.

FIGURE 5. The picryl azide molecule projected parallel to, and perpendicular to, the least-squares best plane of the benzene nucleus

This effect appears rather general in such compounds, and is independent of the angle between the nitro-group and the plane of the ring. The nitro-groups show no anomalies but the azido-group is not linear. The angle at the central nitrogen atom N(5) is $168\cdot3^{\circ}$ with a standard deviation of 1.8° and, whereas the angle at N(4) is not sensibly different from the expected 120° , there is considerable distortion at C(14). The nitrogen atoms N(5) and N(6) must be very strongly repealed by the oxygen O(6), and the observed

- ⁵ J. Trotter, Acta Cryst., 1959, 12, 884.

- J. Trotter, Acta Cryst., 1961, 14, 244.
 P. Copper, Acta Cryst., 1964, 17, 373.
 D. S. Brown, S. C. Wallwork, and A. Wilson, Acta Cryst., 1964, 17, 168.
- ⁹ A. W. Hanson, Acta Cryst., 1964, 17, 559.

distortions suggest that there is some flexibility at N(5) and C(14), but that the configuration at N(4) is very rigid. Interest in the bending of the azide group has appeared recently in the field of reaction mechanisms. A synchronous mechanism ¹⁰ in which both N-C bonds are formed at the same time has been suggested for the addition of an organic azide to a C.C double bond. For this to happen, the rod-like azide group must bend at the central nitrogen atom. Calculations by Roberts ¹¹ have suggested that the energy required for this bending would be expected to be quite small. The bending of the azide group in this molecule may be due to the overcrowding forced on it by the particular environment in this crystal. However, it is noteworthy that picryl azide reacts with a variety of

FIGURE 6. Inter-bond angles in nitrobenzene derivatives (a) nitrobenzene,⁵ (b) *m*-dinitrobenzene, (c) *o*-nitrobenzaldehyde,⁷ (d) sym.-trinitrobenzene in the sym. - trinitrobenzene - anthracene complex,⁸ (e) sym.-trinitrobenzene in the sym.-trinitrobenzene-indole complex,⁹ and (f) picryl azide in the present picryl azide-bis-8-hydroxyquinolinatocopper(11) complex

olefins, norbornene, a-pinene, cyclopentene, cyclo-octene, and others, with exceptional ease.12

The molecule is clearly overcrowded in the region of the azide group, the very short non-bonded contacts (Figure 5) could be reduced if the nitro-groups at C(13) and C(15) and the azide group were all perpendicular to the plane of the benzene ring in a position similar to that observed in free picryl chloride ¹³ and iodide.¹⁴ If this were so in this adduct, the present molecular packing could not occur, since the oxygen atoms O(6) and O(7) would make contacts of about 2.5 - 2.6 Å at the carbon atom C(2) of the metal oxinate. Also, the intermolecular contacts between the azide nitrogen atoms and the oxygen atoms O(4) and O(5) of a nitro-group of a neighbouring picryl azide molecule would be considerably shortened (Figure 2). It seems highly probable that this (Figure 5) is not the configuration of the free molecule, but is a result of a highly stable crystal structure.

In the "polarisation bonded" stacks, the relationship of the benzene system of the acceptor, picryl azide, and the quinoline system of the donor is that suggested by Mulliken for maximum π -overlap, and therefore for maximum stabilisation from charge-transfer This is consistent with the observed charge-transfer band at 19,600 cm.⁻¹, which effects.

¹⁴ H. M. Powell and G. Hase, *J.*, 1941, 1398.

¹⁰ R. Huisgen, Proc. Chem. Soc., 1961, 357; Angew. Chem. Internat. Edn., 1963, 2, 633.

¹¹ J. D. Roberts, Chem. Ber., 1961, 94, 273.

A. S. Bailey, J. J. Merer, and J. D. White, unpublished results.
 G. A. Gol'der, G. S. Zhdanow, and M. M. Umansky, *Doklady Akad. Nauk S.S.S.R.*, 1953, 92, 311.

is polarised perpendicular to the molecular planes; 15 that is, the absorption of light at this frequency is a maximum when the electrical vector lies along the needle axis of the crystal. If the nitro-group at N(7) or the azide group were to move farther out of the plane, this nice system would be upset. It is perhaps noteworthy in this context that the energy of charge-transfer between donor and acceptor is not abnormally high for the 1:1 complexes bis-8-hydroxyquinolinatocopper(II) benzotrifuroxan⁴ and bis-8-hydroxyquinolinatopalladium(II) chloroanil ¹⁶ in which the arrangement of the π -system in the donor and the acceptor must give rise to poor "overlap." The arrangement of donor and acceptor with respect to each other in the picryl azide complex is essentially the same as that observed in the 1,3,5-trinitrobenzene complexes of naphthalene,¹⁷ indole, and skatole.⁹

The stability of the structure must be further enhanced by the neat interlocking of picryl azide molecules and copper complexes when the molecular stacks are brought together to give the complete crystal lattice.

EXPERIMENTAL

Preparation.—The crystals were prepared by the method described by Bailey, Williams, and Wright.15

X-Ray Photography.—The unit-cell dimensions were obtained from zero-layer Weissenberg photographs about the a- and c-axes calibrated by means of the diffraction pattern of a copper wire. X-Ray intensities were estimated visually from sets of multiple-film Weissenberg photographs about the c-axis. The values from individual layers were placed on a common scale by using the exposure time of the films to X-rays from a stabilised source and carefully standardised developing conditions. The intensities were corrected for Lorentz and polarisation effects, but not for absorption or extinction.

Calculations.-These were carried out on a Ferranti Mercury computer. Structure factors and cycles of least-squares refinement were calculated by Rollett's SFLS programme.¹⁸ Atomic scattering factors for nitrogen carbon, and oxygen were as given by Berghuis et al.,¹⁹ for hydrogen by McWeeny,²⁰ and for copper by Thomas and Umeda ²¹ with a correction for anomalous dispersion.²² For Fourier syntheses Mills's general Fourier ¹⁸ programme was used. and for interatomic distances and angles Sparks's programme.¹⁸

We thank the Director and Staff of the Oxford University Computing Laboratory for computing facilities.

(A. S B.) THE DYSON PERRINS LABORATORY.

(C. K. P.) CHEMICAL CRYSTALLOGRAPHY LABORATORY, SOUTH PARKS ROAD, OXFORD.

[Received, November 16th, 1964.]

¹⁵ A. S. Bailey, R. J. P. Williams, and J. D. Wright, J., 1965, 2579.
¹⁶ B. Kamenar, C. K. Prout, and J. D. Wright, preceding Paper.

¹⁷ S. C. Wallwork, J., 1961, 494.
 ¹⁸ O. S. Mills and J. S. Rollett in "Computing Methods and the Phase Problem in X-ray Crystal Analysis," Pergamon, London, 1961, p. 107.
 ¹⁹ J. Berghius, I. M. Haanapel, M. Potters, B. O. Loopstra, C. H. MacGillavry, and A. L. Veenendal,

Acta Cryst., 1955, 8, 478.

R. McWeeny, Acta Cryst., 1951, 4, 513.
 L. H. Thomas and K. Umeda, J. Chem. Phys., 1957, 26, 293.
 C. H. Dauben and D. H. Templeton, Acta Cryst., 1955, 8, 841.